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Abstract—We consider the problem of estimating 3-D human
body pose from visual signals within a discriminative framework.
It is challenging because there is a wide gap between complex 3-D
human motion and planar visual observation, which makes this a
severely ill-conditioned problem. In this paper, we focus on three
critical factors to tackle human body pose estimation, namely,
feature extraction, learning algorithm, and camera utilization.
On the feature level, we describe images using the salient interest
points represented by scale-invariant feature transform (SIFT)-
like descriptors, in which the position, appearance, and local
structural information are encoded simultaneously. On the learn-
ing algorithm level, we propose to use Gaussian processes and
multiple linear (ML) regression to model the mapping between
poses and features. Fusing image information from multiple
cameras in different views is of great interest to us on the camera
level. We make a comprehensive evaluation on the HumanEva
database and get two meaningful insights into the three crucial
aspects for human pose estimation: 1) although the choice of fea-
ture is very important to the problem, once the learning algorithm
becomes efficient, the choice of feature is no longer critical, and 2)
the impact of information combination from multiple cameras on
pose estimation is closely related to not only the quantity of image
information, but also its quality. In most cases, it is true that the
more information is involved, the better results can be achieved.
But when the information quantity is the same, the differences
in quality will lead to totally different performance. Further-
more, dense evaluations demonstrate that our approach is an
accurate and robust solution to the human body pose estimation
problem.

Index Terms—Gaussian processes regression, human pose
estimation, image feature, multiple views.
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I. Introduction

HUMAN BODY pose estimation from visual signals has
long been an active research topic in the computer

vision society, especially for the past two decades. As one of
the most common pieces of content in visual media, human
motion carries a lot of meaningful information for social
communication between humans and interactions between
human and computer. Existing advanced technologies have
been derived from a wide spectrum of real-world applications
[2], such as behavior understanding, content-based image
retrieval, visual surveillance, rehabilitation engineering, and
humanoid robotics. Some robust solutions to this problem have
been provided. However, recovering human pose, especially,
3-D pose, from planar visual information is still extremely
challenging due to the complicated nature of human motion
and limited available information in 2-D images [1].

In general, the state-of-the-art technologies for human pose
estimation can be summarized as two categories: 1) generative,
and 2) discriminative [3]. Generative methods [4]–[8] follow
the prediction-match-update philosophy embedded into the
framework of bottom-up Bayes’ rule and model the state
posterior density using the observation likelihood or a cost
function. This class of methods can handle unknown and
complex motions but suffer from the expensive computation
cost for the unavoidable search in the high-dimensional state
space. Discriminative methods [3], [9]–[12] model the state
posterior distribution conditioned on observations directly. The
models are usually constructed by finding the direct mapping
from the image feature space to the pose label space based on
training samples. Once the training process is completed, pose
estimation will be computationally effective. In this paper,
we choose the discriminative framework for 3-D human pose
estimation, as we did in [1] before.

A. Discriminative Human Pose Estimation

The critical pose estimation problem typically utilizes re-
dundant sensory inputs, e.g., images, to capture valid pose
information. A general discriminative pose estimation system
is mainly constrained by three aspects: 1) feature extraction,
2) learning algorithm, and 3) camera utilization.

Many existing discriminative methods [3], [9], [11], [13]–
[15] extract image features from human body silhouettes.
These kinds of features have the advantage of containing
strong shape cues for pose estimation while being invariant to
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Fig. 1. Framework of human pose estimation by fusing visual information from multiple views. The whole framework consists of four main modules: visual
signal, feature extraction, pose estimation, and evaluation.

appearance and lighting. The silhouettes can be conveniently
extracted by simple background subtraction. However, these
methods are mainly applicable to the discrete pose case with
large pose intervals between labels, because the informa-
tion loss of interior appearance may introduce one-to-many
ambiguities to the mapping from silhouettes to poses. Such
multimodal ambiguity of state posterior distribution is one
of the main error sources of pose estimation. Intuitively, this
problem can be alleviated more or less by effectively utilizing
the interior appearance information. This belief was proven
by experiments in a few recent works [16]–[19]. However,
this ambiguity cannot be entirely resolved when only utilizing
monocular image information, even if the image descriptor is
perfect and has no loss of any local details. For such a highly
nonlinear and severely ill-conditioned problem, introducing
multiview visual information is a radical way to further
enhance the performance of pose estimation. Most of existing
works [20]–[26] using multiview information are based on a
generative framework. The approaches of utilizing multiview
information mainly include photogrammetric techniques [22],
[23], [26] and integrating the multiview information into the
computation of likelihood functions [20], [21], [25]. Derived
from our previous work [1], we propose to develop a dis-
criminative framework for body pose estimation by fusing
multiview camera inputs.

We describe the image features using the salient interest
points, represented by the SIFT descriptor [27]. The distribu-
tion of the feature space, containing these sparse and local
image descriptors, is modeled by the bag-of-words represen-
tation, which essentially embodies the discriminative property.
This representation captures the spatial co-occurrence and
context information of the local structure, and also encodes
the relative spatial positions. In addition, as computed on
overlapped patches instead of pixels, it can tolerate a range
of illumination and position variations. After extracting the
image features, the fusing strategy is straightforward. We
concatenate the feature vectors from multiple views together
as the complete representation of the visual signal. We also
extract raw features, namely, the original image pixel intensity
as the comparative benchmark feature.

As long as the discriminative features from multiple views
are extracted, modeling the mapping between pose label space
and feature space becomes more important. There are variety

of approaches that can provide reasonable solutions, such as
neural networks [13], fast nearest neighbor retrieval [6], [28],
regression methods [9], [29], and Bayesian mixture of experts
[3], [16]. We present a technique based on the nonparametric
Gaussian processes (GP) regression, since it is flexible, fully
probabilistic, and effective to handle the small-sample-size
problem in the particular scenario of human pose estimation.
As a contrast to GP regression, ML regression is also tested
in this paper.

Extensive evaluations on the HumanEva database [30], [31]
are provided across all the three aspects of the pose estimation
system. In multiview scenarios, it is significant to find how
the quantity and quality of image information cast impacts
on the pose estimation performance. We present comparative
research on different combinations of multiple views. The
comparison between GP and ML regression algorithms ac-
tually demonstrates the difference in efficiency between the
nonlinear nonparametric and the linear parametric algorithm,
for the problem of pose estimation. Both feature extraction
and choice of algorithm are crucial, but comprehensive ex-
periments give some interesting insights into the situation
when effective algorithms dominate the system performance
for different choices of features.

B. System Framework and Contributions

As illustrated in Fig. 1, our whole framework is composed
of four main parts. The second part is focused on feature
extraction. After the images captured by multiple cameras
are imported in the first part, the system extracts the features
for each camera, respectively. According to the demands of
evaluation, we can form the features by combining a different
number of cameras in the fusion step. In the training process,
the combined image features are sent into the algorithm
module. The parameters of the algorithm for estimating human
pose are learned by using the ground truth. Once the training
process is completed, given a test image, the system estimates
the pose by directly applying the learned parameters. These
steps are completed mainly in the first three parts. The last
part serves for the performance evaluation.

The contributions of the paper are fourfold.

1) We develop a discriminative 3-D pose estimation frame-
work in a systematic way, in which three critical factors,
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feature extraction, regression algorithm, and camera
utilization, are jointly considered.

2) We design a corner-interest-point-based SIFT (CP-SIFT)
feature, in which the body position, appearance, and
local structural information are encoded simultaneously.
The Gaussian process regression is exploited to build
the mapping from visual feature space to pose label
space. This feature descriptor and regression algorithm
are demonstrated to be sufficiently effective and robust
in the realistic evaluations.

3) We extend our previous pose estimation work [1] from
single-view input to multiple-view input, which brings
satisfying improvement on the performance.

4) We conduct comprehensive experimental studies on the
HumanEva database using our proposed framework.
We obtain some interesting insights into the impacts
of feature, regression algorithm and information fusion
of multiple views on the system performance, which
provide useful guidance for the future system design.

The remainder of the paper is organized as follows. In
Section II, we briefly introduce the visual features used in
our pose estimation system. The regression algorithms, Gaus-
sian process and ML regression, and their application to the
framework are described in Section III. In Section IV, exten-
sive experiments, evaluation results, method comparisons, and
case-dependent analysis are presented. Finally, we conclude
this paper with some interesting and useful insights, and future
directions in Section V.

II. Feature Extraction

Image-based body pose regression heavily relies on an effi-
cient feature extraction algorithm. The silhouettes or contours
of human body contain strong shape cues for pose estima-
tion and are invariant to appearance and lighting variations.
However, the appearance information within the human body
cannot be simply neglected because adjacent poses can get
ambiguous from each other by pure shape, contour, or silhou-
ette. The feature representation should be designed to contain
interior body appearance information, which is sensitive to the
subtle change of human pose. The local structures and interior
relative positions of body parts also play important roles in
determining the pose labels for most ambiguous cases. Under
these considerations, we design a specific descriptor [1] to
specify the following feature extraction procedure.

1) Human Detection: The background substraction is used
to determine the bounding window for human detection
in each input image. This bounding window is then re-
scaled to a fixed size.

2) Interest Point Detection: Within the bounding window,
the Harris corner detector [32] is used to detect interest
points. Fig. 2(a) shows the example of interest points
labeled on an image frame. The background subtraction
here can slightly improve the performance of interest
point detection.

3) SIFT Feature Extraction: The SIFT descriptor [27] is
applied at each interest point, which is denoted as a
vector p.

Fig. 2. Feature extraction (originally shown in [1]). (a) Interest points on
an image frame. (b) Relative coordinates of interest points from all images
(marked as “·′′) and the visual words (marked as “∗′′).

4) CP-SIFT Feature Representation: Find the relative co-
ordinate (u, v) of each corner interest point. The final
descriptor of each interest point is represented as d =
(u, v, p)T .

We call the feature as CP-SIFT feature because it is a
SIFT like feature based on corner interest points with position
information. The combination of SIFT descriptor and Harris
corner points with position information is one of the contribu-
tions in this paper. The feature is scale invariant and partially
illumination invariant due to the introduction of Harris corner
detector and SIFT descriptor. Specifically, the local region
around each interest point is first partitioned into nine cells,
and a nine-orientation histogram is calculated on each cell.
In total, the descriptor vector has 83 dimensions, including
the dimension of relative coordinates of the interest point.
Technically, eliminating the left-right ambiguity of human
body motion is crucial to the accuracy of pose estimation.
The proposed descriptor encodes the appearance, edge, and
position information into a vector. In doing so, the multimodal
ambiguities of posterior pose distribution can be alleviated
to a large extent. Actually, the CP-SIFT feature in which
the position information is encoded, is a variation of SIFT.
This idea is inspired by the previous work [33] especially by
our previous “X–Y patch” work [34], which demonstrates the
importance of local feature coordinates when pose variation
is distinct. It is meaningful for body pose estimation because
in nature the human body is a hierarchal structure with fixed
relative connections between different body parts.

After we calculate all the local descriptors, the unsu-
pervised bag-of-words model [35] is used to represent the
distribution of visual feature space. The descriptors extracted
from all training images are clustered by K-means. The
K cluster centers, called visual words, form a code book
C = {c1, c2, . . . , cK}. In this paper, the number of visual
words is empirically set as 60 in the experiments, which are
orders of magnitude lower than other works [16], [35]. Once
the code book is available, each descriptor in the descriptor
set D = {d1, d2, . . . , dm} of a given testing image votes
softly with respect to the visual words by calculating the
distances. The bag-of-words representation, denoted as x, is
the accumulated score of all descriptors on the K visual
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words. Each image finally is represented as a K-dimensional
feature vector. In Fig. 2(b), the relative coordinates of interest
points and the visual words are displayed as a example,
where the relative coordinates are calculated by subtracting
the coordinate mean of all the interest points.

To test how and to what extent the choice of image feature
can impact pose estimation, we also extract the raw features
(appearance) in which the original image pixel intensities are
kept. In this paper, these raw features are used as a baseline
feature for the comparisons with CP-SIFT.

As for multiview visual data input, we use the simplest
fusion method by concatenating the feature vectors of all
the synchronized views. According to our previous work
[36], a more sophisticated fusion method can be adopted. To
demonstrate the advantage of multiview feature fusion, we will
compare the performances of single view and multiple views
in the experiments.

III. Pose Regression

In this section, we introduce the regression methods for
estimating human pose from image features proposed in the
foregoing section. We denote the pose label vector as y ∈ Rd

and the image feature vector as x ∈ RK. Both GP regression
and ML regression will be evaluated to estimate 3-D human
poses.

A. Nonparametric Regression: Gaussian Process Regression

GP [37] is the generalization of Gaussian distributions
defined over infinite index sets. It can be used to specify
a distribution over functions. Given a training sample set
S = {(xi, yi), i = 1, . . . , N} where (xi, yi) is an image-to-pose
pair and yi’s are the components of yi which are normalized to
be zero-mean unit variance process. Suppose the relationship
between xi and yi is modeled by regression

yi = f (xi) + εi (1)

where εi ∼ (0, ξ−1) denotes noise and hyper-parameter ξ

represents the precision of the noise. Define a GP prior over
functions fi, we have

p(f|X) = N (0, W) (2)

where f = [f1, . . . , fN ]T are the function values, fi =
f (xi), X = [x1, . . . , xN ] and W is a covariance matrix whose
entries are given by a covariance kernel function, k(xi, xj).
Here, we choose the kernel function as

k(xi, xj) = θ0 exp

{
−θ1

2
‖ xi − xj ‖2

}
+ θ2 + θ3xi

T xj. (3)

For an unseen observation xN+1, the joint distribution is,
therefore, written as

p(YN+1) = N (YN+1|0, CN+1) (4)

where YN+1 = [y1, . . . , yN, yN+1]T and the covariance matrix
CN+1 is given by

CN+1 =

(
CN k
kT c

)
. (5)

CN has elements

C(xi, xj) = k(xi, xj) + ξ−1δij (6)

where δij is the Kronecker delta function, the vector k has
elements k(xn, xN+1) for n = 1, . . . , N, and the scalar c =
k(xN+1, xN+1) + ξ−1.

During training, the hyper-parameters � = {θ0, . . . , θ3, ξ}
of GP are learned by minimizing

− ln p(X, �|Y) =
1

2
ln |CN | +

1

2
YT C−1

N Y + r (7)

where Y = [y1, . . . , yN ]T and r = N ln(2π)/2 is a constant.
Once the GP model is learned, the conditional distribution
p(yN+1|Y, X) is a Gaussian distribution with mean and co-
variance given by

µ(xN+1) = kT C−1
N Y (8)

σ2(xN+1) = c − kT C−1
N k. (9)

New test samples can be easily and efficiently inferred by (8)
and (9).

B. Parametric Regression: ML Regression

To evaluate the efficiency of different regression algorithms
on the pose estimation task, we take the ML regression model
[38] as a comparative baseline in the algorithm level. The ML
regression model can be formulated as

Y = X̃β + e, Var(e) = σ2I (10)

where Y is the joint angle vector over all training samples.
X̃ is the design matrix whose columns are the model terms
evaluated at the components of image feature vector. In
this model, the elements of the first column in X̃ are all
1s for the intercept and the other columns include linear
terms and pure-quadratic terms. The vector β encodes the
regression coefficients that need to be estimated during the
training process. The error vector e consists of zero mean and
independent random variables with common variance σ2. To
fit the model to the data, β can be estimated by ordinary least
squares β̂ = (X̃

′
X̃)−1X̃

′
Y [38]. But the normal equations are

often badly conditioned relative to the original system. So the
orthogonal decomposition of X̃ is used to find the solution.

Once the regression model is trained, we have

Ŷ = X̃β̂ (11)

with

Ŷ = [ŷ1 · · · ŷN ]T , β̂ = [β̂0 β̂1 β̂2]T

X̃ = [1N×1 [x1 · · · xN ]T [x2
1 · · · x2

N ]T ]

where ŷi represents the estimated joint angle for the image
feature xi, β̂0 is the learned intercept term, β̂1, β̂2 ∈ Rm are
the learned parameter vectors, and x2

i is the array-wise square
of xi.
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TABLE I

Average RMS Error (Degree) Over All Joint Angles, All Subjects for Action Walking, Box, Jog, and Gestures

CP-SIFT Feature SIFT Feature Raw Feature

Walking Box Jog Gestures Walking Box Jog Gestures Walking Box Jog Gestures

ML Regression 7.0365 7.9200 4.0853 7.7505 7.3596 8.1303 4.2951 7.9723 7.9774 9.6856 4.7837 8.8647

Ridge Regression 7.1249 7.8601 3.8912 6.9338 7.5327 9.3216 4.3094 6.8351 8.2553 8.3954 4.9216 7.6933

GP Regression 6.0934 4.7904 3.7766 4.5056 6.4211 5.2236 4.1923 4.4981 6.9798 5.2662 4.2656 4.7938

Fig. 3. Performance comparison between GP and ML regression on (a) CP-SIFT for Walking, (b) raw feature for Walking (c) CP-SIFT feature for Box, and
(d) raw feature for Box. Here, (a) and (b) are for the Walking action, (c) and (d) are for the Box action. Both mean and standard deviation of RMS error over
all the individual joints, normalized by the range of that joint variation, are reported.

IV. Experiments

In the experiments, we aim to find the intrinsic relationships
between the accuracy of pose estimation and image features,
regression algorithm and the utilization of information from
multiviews. All the experiments are conducted on the publicly
available HumanEva dataset [30], [31] for the evaluation
of human pose estimation, collected at Brown University,
Providence, RI.

A. Database

The HumanEva data were captured simultaneously using
multiple high-speed video capture systems and a calibrated
marker-based motion capture system, whose video and motion
streams were well synchronized. In the recording, multiple
subjects were asked to perform a set of predefined actions
repetitively. This database originally provides 3-D locations of
the body parts in the world coordinate system for the motion

capture data. In total, there are ten parts: torso, head, upper and
lower arms (left and right), and upper and lower legs (left and
right). In this paper, we convert the 3-D locations to the global
orientation of torso and relative orientation of adjacent body
parts. Each orientation is represented by three Euler angles. We
have in total 26 whole body degrees of freedom by discarding
the coordinates that have a constant value in the performed
motions. The set of joint angle trajectories are normalized to
be a zero-mean unit variance process. An original partition
on the database generates the training, validation, and test
subsets. As there is no motion data provided for the test set, we
use sequences in the training set for training and those in the
validation set for testing. As a result, a total of 2950 frames
(first trial of subjects S1, S2, and S3) for Walking motion,
2345 frames for Jog motion, 2486 frames for Box motion,
and 2850 frames for Gestures motion are used. The multi-
view visual information we used are from cameras C1, C2,
and C3.
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Fig. 4. Curve comparisons of joint angles: ground truth and estimations with GP and ML regression. (a) Right hip (x-axis) of subject S2 in Walking.
(b) Right elbow of subject S3 in boxing.

Fig. 5. Performance comparison between CP-SIFT feature, SIFT feature and raw feature for (a) and (c) GP regression and (b) and (d) ML regression. Here,
(a) and (b) are for the Walking action, (c) and (d) are for the Box action. RMS error of each individual angle, normalized by the range of that angle variation,
is reported.

B. Evaluation: Feature and Regression Algorithm

Theoretically, the accuracy of pose estimation is closely
related to the choice of image feature and regression algorithm.
To evaluate the impacts of both factors on pose estimation,
we test the pose regression on CP-SIFT feature, SIFT feature,
and raw feature. We choose GP and ML regression as the
regression algorithms. Furthermore, to verify the efficiency
of GP regression and make further comparisons between
the two classes of algorithms (nonparametric nonlinear and
parametric linear regression algorithm) on the pose estimation
problem, we also use the ridge regression algorithm in the
experiments. For multiview visual data, we choose to discuss
the combination of cameras C1 and C2 since similar results
and conclusions can be obtained from other camera combina-

tions in our investigation. For the raw feature, we reduce the
dimension to 100 with principal component analysis (PCA)
after fusion.

In Table I, we report the mean (over all joint an-
gles) root mean square (RMS) absolute difference errors
[9] between the ground-truth and estimated joint angles, in
degrees

D(y, y′) =
1

d

d∑
i=1

|(yi − y′
i)mod ± 180deg|. (12)

From the table, we can see that the performance of GP
regression largely outperforms ML regression and ridge re-
gression for all the three features. The ML regression and ridge
regression get close performance and the performance differ-
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Fig. 6. Performance comparison between different view combinations. Average relative errors on all the Walking and Jog sequences for one-view, two-view,
and three-view combinations. The algorithm and features used here are (a) GP and raw feature, and (b) GP and CP-SIFT feature.

ence is statistically insignificant. These results demonstrate the
efficacy of nonparametric nonlinear regression algorithm on
pose estimation.

We can also observe that the performance of the CP-SIFT
feature is significantly better than that of the raw feature for
all the three regression algorithms. The performance of SIFT
feature is lower than CP-SIFT but better than raw feature.

In Fig. 3, we compare the performances of GP and ML
regression on the CP-SIFT and raw features. Because the
performance of ridge regression is very close to that of ML
regression, we do not show it in the figures to save space.
Actions shown in the figure are Walking and Box, which are
the representative actions for moving around and standing at
a fixed place respectively. The mean and standard derivation
of RMS error over all the 26 joint angles, normalized by the
range of variation, are reported respectively. It can be seen that
GP regression achieves superior performance for both features
by mean and standard derivation. And, the superiority of GP
over ML is much apparent for raw features than the CP-SIFT
feature. In Fig. 4, the estimations and ground truth of two joint
angles in Walking and Box actions are plotted respectively.
The curves of estimation with GP regression are closer to the
ground truth and smoother than that of ML regression although
there exist jitters in some segments.

We also compare the relative errors of individual angles in
Fig. 5 on the feature level. Similar to Fig. 3, Walking and
Box actions are selected to show in the figure respectively. As
shown in Fig. 5(a) and (c) for GP regression, the superiority of
CP-SIFT feature over raw feature and SIFT feature is small.
However, as we can see in Fig. 5(b) and (d), this superiority
is salient for ML regression. It is an interesting observation,
which is also consistent with that indicated by the data shown
in Table I. It demonstrates that the performance difference
among algorithms is much larger than that among features. In
other words, the choice of regression algorithm plays a more
important role than the choice of feature for this problem. We
will discuss this further in Section IV-D.

C. Evaluation: Multiple Views

To evaluate the relationship between the quantity and qual-
ity of image information and pose estimation, we conduct
the experiments combining information from multiple views.
The combination strategy is simple. We concatenate the feature

Fig. 7. Multiview comparison. (a) Average relative errors on all the Box
sequences for different two-view combinations C1–C2, C1–C3, C2–C3.
(b) Sample images from camera C1, C2, and C3 for the Box action.

vectors from each single camera together as the complete
representation of the visual signal. To avoid over fitting, we
reduce the dimension of the concatenated feature vector to
100 with PCA. In general, at this point, over 95% of the data
variance can be kept. In the experiments, there are in total
seven camera combinations in consideration. We represent
these combinations as C1, C2, C3, C1–C2, C1–C3, C2–C3,
and C1–C2–C3.

The relative errors of all the joint angles with different
camera combinations are shown in Fig. 6, which are averaged
on all the three subjects (S1, S2, S3). For the one view sce-
nario, the errors are averaged on C1, C2, and C3. For the two
views scenario, the errors are averaged on the combinations of
C1–C2, C1–C3, and C2–C3. The GP regression algorithm
is used to combine with raw feature and CP-SIFT feature
respectively. Because the performance comparison between
different view combinations is closely related to the style of
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TABLE II

Average RMS Error (in Degree) Over All Joint Angles, All Subjects for Walking, Box, Jog, and GesturesActions

GP Regression ML Regression
Walking Box Jog Gestures Walking Box Jog Gestures

One View CP-SIFT Feature 6.2781 5.3892 3.7319 4.7831 7.0436 9.7649 4.1527 8.6803
Raw Feature 6.0982 5.4391 4.0843 4.9828 8.6213 11.4148 5.1201 12.5518

Two Views CP-SIFT Feature 6.0584 4.8527 3.8153 4.6328 7.0384 6.3836 4.1061 7.6316
Raw Feature 7.4333 5.6369 3.8751 4.8845 7.7915 9.9176 4.5428 10.6549

Three Views CP-SIFT Feature 6.0564 4.8101 3.7297 4.4676 6.9867 6.2322 4.0575 8.3205
Raw Feature 6.0199 5.3332 3.8287 4.8977 8.0366 9.6856 5.1291 8.8647

The evaluation is for the all-round comparisons of algorithm, feature, and view combination.

Fig. 8. Some of the sample estimation results for action (a) Walking (b) Jog, and (c) Box (originally shown in [1]). The first row shows the provided ground
truth projected onto the camera C1, and the second row shows the estimated pose projected onto the same camera. Each column corresponds to a frame.

action, we make the comparisons on two classes of actions:
1) people moving around, and 2) people standing in a fixed
place. For the moving around actions, such as Walking and Jog,
the contributions of different views are roughly similar over the
whole sequence. But for the actions with small global motion
with respect to the cameras, such as Box, the viewpoint of
different cameras is quite different, just as shown in Fig. 7(b).
From Fig. 6, we can see that when more views are combined,
more accurate results of pose estimation can be achieved. It
is reasonable because when the information from multiple
cameras is involved in the process of pose estimation, the ill-
condition of this problem is mitigated. The improvement is due
to the contribution from the quantity of image information.
Fig. 8 shows some sample image frames of camera C1, on
which the ground truth and estimated pose represented as the
outline of a cylinder based human model are superimposed.

Another interesting observation about the multiview combi-
nation is related to the quality of image information. Fig. 7(a)
shows the relative errors of three combinations of two views
for all the Box sequences. It can be seen that the performance
of C1–C3 combination outperforms that of the C1–C2 and C2–
C3 combinations for most of the joint angles. Fig. 7(b) shows
the sample images from three single views. We can see that
the camera C1 captures the frontal view of Box action and the
other two, C2 and C3, capture the side view of the action.
Therefore, the combination of C1–C2 and C1–C3 can get
better results than the combination of C2–C3. And, the action
is more observable to camera C3 than camera C2 because

camera C3 can capture some part of the frontal view. This is
the reason why C1–C3 combination has some superiority over
the combination of C1–C2.

D. Discussion

In the presented evaluations, we evaluated how and to what
extent the three critical factors, feature extraction, regression
algorithm, and multiview utilization impact on the problem
of pose estimation within the discriminative framework. More
details about the all-around comparisons of the three factors
are presented in Table II.

We found in the evaluation of feature versus regression
algorithm that, as the representation of visual signals, the
choice of feature has important impacts on the accuracy of
pose estimation (see Fig. 5 and Table I). However, compared
to the regression algorithm, feature is not the most important
factor. This conclusion is validated in our experiments for the
problem of pose estimation. Actually, from Fig. 5 and Tables I
and II, we can see that if the regression algorithm is not
powerful enough, the impact of the choice of feature will be
remarkable. But once the regression algorithm performs better,
e.g., in this paper the GP regression is used, the performance
difference between features is reduced dramatically. So, this
phenomena indicates that an effective algorithm can extract
more useful information from any features and dominate the
whole system performance.

Considering the view combination, it is intuitively be-
lieved that more views will provide more information and
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more accurate pose estimation performance. However, in the
evaluation, we found that sometimes the situation is more
complicated. The final results depend not only on the quantity
of information but also its quality. From Table II, we can see
in most cases it is true that when more visual information is
involved, the performance is much better. However, there exist
some cases violate this belief. For the outliers, some of the
combined information may introduce unexpected noise to the
feature extraction module. On the other hand, the importance
of information quality is well demonstrated in Fig. 7, where the
information quantity is the same, but the difference in quality
leads to totally different performances.

V. Conclusion

We have presented methods to solve the human body
pose estimation problem in a discriminative framework. Our
interests are in finding out not only the state-of-the-art solution
to this problem, but also the impact of the three critical
factors, namely, regression algorithm, feature extraction and
camera utilization on the problem. We made comprehensive
evaluations on the HumanEva database and got some inter-
esting insights into the relationship of these crucial aspects.
In the feature extraction module, we introduced the CP-SIFT
feature in which the position, appearance, and local structural
information are all captured and encoded. The efficiency of the
CP-SIFT feature has been demonstrated by the comparison to
raw features in the evaluations. For the regression algorithm,
GP regression, as we chose, showed remarkable superiority
over ML regression. By the evaluation, we found that although
the choice of feature is very important, but when an efficient
regression algorithm is chosen, it is no longer critical. We
noticed specially that this observation is fairly consistent with
the finding in recent works on sparse representation [39].
Another interesting observation is about the information fusion
of multiple views. In the process of pose estimation, before
fusing multiview information, one has to consider the impor-
tant roles of both quality and quantity of image information at
the same time. For the future work, we plan to explore more
sophisticated fusion strategies from our recent work [36] on
the multiple feature combination. The temporal-spatial local
Gaussian process experts model [40] will also be developed
to handle multimodality.
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